Lesson Objectives:

  • LO 1 Understand how to import modules and module components in Python. (Proficiency Level: C)

    • MSB 1.1 Employ the Python standard library to solve a problem. (Proficiency Level: C)
  • LO 2 Describe how to utilize PIP to install a Python package. (Proficiency Level: B)

  • LO 3 Comprehend Python objects

    • MSB 3.1 Comprehend Python classes
    • MSB 3.2 Differentiate between Python objects and classes
  • LO 4 Explain the Python keyword super

  • LO 5 Explain Python object initialization

  • LO 6 Explain Python object attributes

  • LO 7 Describe polymorphism in Python

  • LO 8 Describe inheritance in Python

  • LO 9 Describe getter and setter functions in Python

  • LO 10 Understand how to implement input validation in Python.

  • LO 11 Understand how to implement exception handling in Python.

  • LO 12 Describe the terms and fundamentals associated with object-orientated programming using Python. (Proficiency Level: C)

    • MSB 12.1 Describe the advantages of object-orientated programming in Python. (Proficiency Level: A)
  • LO 13 Discuss Common Principles of object-oriented programming.

  • LO 14 Discuss Code Styling Considerations of object-orientated programming.

Performance Objectives (Proficiency Level: 3c)

  • Conditions: Given access to (references, tools, etc.):

    • Access to specified remote virtual environment
    • Student Guide and Lab Guide
    • Student Notes
  • Performance/Behavior Tasks:

    • Create, reuse and import modules in Python.
    • Utilize modules in the Python standard library.
    • Install and utilize a Python package via PIP.
    • Write a class in Python
    • Instantiate a Python object
    • Write a class constructor
    • Write object-oriented programs
    • Implement object inheritance.
    • Expand class functionality using getter and setter functions.
    • Use class methods to modify instantiated class objects.
    • Write a program to demonstrate input validation in Python.
    • Write a program to demonstrate exception handling in Python.
  • Standard(s)

    • Criteria: Demonstration: Correctable to 100% in class
    • Evaluation: Students will have 4 hours to complete the timed evaluation consisting of both cognitive and performance components.
    • Minimum passing score is 80%